玻璃幕墙癌症—-钢化玻璃自爆(续)2007/11/15
玻璃幕墙癌症—-钢化玻璃自爆(续)
1 控制钢化应力
钢化应力越大,硫化镍结石的临界半径就越小,能引起自爆的结石就越多。显然,钢化应力应控制在适当的范围内,这样既可保证钢化碎片颗粒度满足有关标准,也能避免高应力引起的不必要自爆风险。平面应力(钢化均匀度)应越小越好,这样不仅减小自爆风险,而且能提高钢化玻璃的平整度。
己发展出无损测定钢化玻璃表面压应力的方法和仪器[6]。目前测定表面应力的方法主要有二种:差量表面折射仪法(Differential Surface Refractometry,简称DSR)和临界角表面偏光仪法(Grazing Angle Surface Polarimetry,简称GASP)。
DSR应力仪的原理是测定因应力引起的玻璃折射率的变化。当一定入射角的光到达玻璃表面时,由于应力双折射的作用,光束会分成两股以不同的临界角反射,借助测微目镜测出二光束之间的距离,即可计算出应力值。
GASP应力仪将激光束导入玻璃表面,在表面附近的薄层中以平行玻璃表面的方向运行一小段距离,应力双折射导致激光束发生干涉,测定干涉条纹的倾角就可计算出应力值。
两种方法各有优缺点。DSR应力仪售价较低、可测定化学钢化玻璃,但操作要求较高、不易掌握、测量精度相对较低。GASP应力仪工作可靠、精度高、易校验,不足之处是价格较贵。
钢化均匀度(平面应力)测定较简单,利用平面透射偏振光就能定性分析。但要定量分析,须使用定量应力分析方法,一般常用Senarmont检偏器旋转法测定应力消光补偿角,根据角度可方便地计算出应力值。
2 均质处理(HST)
均质处理是公认的彻底解决自爆问题的有效方法。将钢化玻璃再次加热到290℃左右并保温一定时间,使硫化镍在玻璃出厂前完成晶相转变,让今后可能自爆的玻璃在工厂内提前破碎。这种钢化后再次热处理的方法,国外称作“Heat Soak Test”,简称HST。我国通常将其译成“均质处理”,也俗称“引爆处理”。
从原理上看,均质处理似乎很简单,许多厂家对此并不重视,认为可随便选择外购甚至自制均质炉。实际并非如此,玻璃中的硫化镍夹杂物往往是非化学计量的化合物,含有比例不等的其他元素,其相变速度高度依赖于温度。研究结果表明,280℃时的相变速率是250℃时的100倍,因此必须确保炉内的各块玻璃经历同样的温度制度。否则一方面有些玻璃温度太高,会引起硫化镍逆向相变;另一方面温度低的玻璃因保温时间不够,使得硫化镍相变不完全。两种情况均会导致无效的均质处理。笔者曾测试了多台均质炉的温度制度,发现最好的进口炉也存在30℃以上的温差,多台国产炉内的温差甚至超过55℃。这或许解释了经均质处理的玻璃仍然出现许多自爆的原因。
3 均质炉
均质炉必须采用强制对流加热的方式加热玻璃。对流加热靠热空气加热玻璃,加热元件布置在风道中,空气在风道中被加热,然后进入炉内。这种加热方式可避免元件直接辐射加热玻璃,引起玻璃局部过热。
对流加热的效果依赖于热空气在炉内的循环路线,因此均质炉内的气体流股必须经过精心设计,总的原则是尽可能地使炉内气流通畅、温度均匀。即使发生玻璃破碎,碎片也不能堵塞气流通路。
只有全部玻璃的温度达到至少280℃并保温至少2小时,均质处理才能达到满意的效果。然而在日常生产中,控制炉温只能依据炉内的空气温度。因此必须对每台炉子进行标定试验,找出玻璃温度与炉内空气温度之间的关糸。炉内的测温点必须足够多,以满足处理工艺的需要。
4 玻璃堆置方式
均质炉内的玻璃片之间是热空气的对流通道,因此玻璃的堆置方式对于均质处理的质量是极其重要的。首先玻璃的堆置方向应顺应气流方向,不可阻碍空气流股。其次,玻璃片与片之间的空隙须足够大,分隔物不能堵塞空气通道,玻璃片之间至少须有20mm的间隙,片之间不能直接接触。对于大片玻璃,玻璃很容易因相互紧贴引起温差过大而破碎。
5 均质温度制度
均质处理的温度制度也是决定均质质量的一个决定性因素。1990年版的德国标准DIN 18516笼统规定了均质炉内的平均炉温为290+/-10℃,保温时间长达8小时。实践证明按此标准进行均质处理的玻璃自爆率还是较高,结果并不理想。因此,根据1994年以来的大量研究成果,2000年的欧洲新标准讨论稿将规定改为: 均质炉内玻璃的温度在290+/-10℃下保温2小时。多年累积的数据分析表明,严格按新标准均质处理过的玻璃,发生后续自爆的概率在0.01以下。此概率的意义是:每1万平方米玻璃,在1年之内再发生1例自爆的概率小于1%。由此才可自信地称钢化玻璃为“安全玻璃”。
6 浮法玻璃生产工艺
玻璃中的硫化镍夹杂物是导致钢化玻璃自爆的本质原因,人们自然地想到是否有可能在浮法玻璃生产过程中减少或消除此杂质。从技术角度看,目前世界上最先进的玻璃缺陷自动检测仪也只能检测大于0.2mm的点缺陷,试图在浮法生产线上将有缺陷的玻璃全部挑出来几乎是不可能的。
有报导在浮法原料中添加硫酸锌或硝酸锌能有效地减少硫化镍结石的数量。硫酸锌或硝酸锌都是强氧化剂,能将玻璃中的硫化物氧化成硫酸盐,后者能被玻璃液吸收,从而减少或消除硫化镍结石。
7 减少钢化玻璃的破损:
a.优先选用大厂出厂的原片玻璃,他们选材、工艺控制较严,混入杂质的机率较小。
b.钢化玻璃应边缘进行倒角磨边处理,减小应力集中。
c.做好玻璃的成品保护,防止蹦边、掉角,对蹦边、掉角不大的用抛光机磨成圆弧面,减小应力集中。
d.采购时要求玻璃厂进行钢化后的均质处理(引爆处理),一般小厂没有均质炉,或者有也出于成本考虑不用。并与其约定自爆率,以备日后索赔。
e.采光顶、雨蓬等接近水平、吸热较大的玻璃可考虑夹胶、半钢化夹胶(破碎后碎块较大,不易掉落)、化学钢化玻璃(强度高、价格贵)。
f.型材设计时充分考虑玻璃的热胀冷缩和层间位移变形,留住变形空间,施工时注意玻璃下部的垫块的厚度和硬度以及玻璃与框周边的间隙。
8 高层建筑玻璃幕墙使用全钢化玻璃问题值得探讨。
钢化玻璃自爆是当前玻璃幕墙安全迫切需要觧决重要的问题。但是对于安全玻璃的概念,传统的概念是,(全)钢化玻璃属于安全玻璃。其根据除了强度较高外,主要是由于(全)钢化玻璃破碎时会整块玻璃全部破碎成蜂窝状钝角小颗粒,不易伤人。通过这次调查和众多事故实践,对于这一概念提出了质疑,关于高层建筑玻璃幕墙使用安全玻璃问题,有讨论的必要。对于高层建筑玻璃幕墙使用安全玻璃,其安全的主要担心是玻璃破碎高空坠落伤人。这里应该包含三部分要求:
1)是玻璃具有足够的强度,使其承受设计荷载不破坏。
2)是玻璃具有防碰碎散落性,使其处于破碎状态时保证不会坠落飞散———随而不散落;
30是玻璃具有不易伤人的破坏形态,避免大块锐利碎片,而呈钝角,圆滑小颗粒状———但若从高空散落则有落则不论形态。以上三要素应该是把握与控制高层建筑玻璃幕墙安全玻璃的要点。
(全)钢化玻璃具备较高强度和其破坏形态为钝角小颗粒这两个安全因素,但不具备防破碎散落性这一对高层建筑玻璃幕墙而言关键性的安全因素、因此而带来的不安全后果是,(全)钢化玻璃破碎后的大群呈钝角的碎片,从高空散落而下,即使颗粒较小,但速度已很大,同样能伤人。其中的罪魁祸首便是自由落体重的重力速度。所以,对高层建筑玻璃幕墙的玻璃是否安全,最重要的是不破坏和碎片不散落。不论何种形态的玻璃碎片,如高层建筑上散落而下,都是危险的甚至是致命的。 此外,(全)钢化玻璃自爆破坏是无先兆的,是目前尚无有效的完全阶止的方法,是玻璃的癌症,玻璃自爆破碎和高空散落,便成为高层建筑玻璃幕墙使用(全)钢化玻璃并不安全的基本技术依据。因此,在一定高度下使用(全)钢化玻璃被认为是安全的,而超过一定高度使用它则应认为是不安全的。安全是一个相对的概念,是有条件的;不是绝对的,无条件的。对安全玻璃的传统概念,脱离使用条件,仅仅只从其碎片形态来定义,可能是不全面的。因此,在很多国外玻璃幕墙技术标准和规范中都明确玻璃幕墙使用防飞溅玻璃,日本高层建筑玻璃幕墙上使用(全)钢化玻璃,必须增贴一层防飞散膜,以确保安全。此外,如果半钢化玻璃破坏时,尽管其碎片大,仍有可能保留在框架中,而维持不散落则其伤人的可能性反而会小些。据此,保证黏结玻璃结构胶的宽度,使玻璃裂而不散落倒是一项保证半钢化玻璃安全性高于(全)钢化玻璃的技术措施。否则,如此大片而又尖锐形态,一旦从高空坠落则危险性极大。例如“钛全箔膜”与普通浮法玻璃复合而成的一种安全玻璃,因为它正是针对(全)钢化玻璃前述缺点而产生的新的材料和应用优势。“钛金箔膜复合安全玻璃”具有高强度的特点,其增强效果可以达到(全)钢化玻璃的同一级别。高的抗冲击性、防爆性、破碎不散落性。“强而不自爆,碎而不散落”防飞溅玻璃才是玻璃幕墙使用的安全玻璃。
结 语
硫化镍相变是导致钢化玻璃自爆的主要原因,目前解决钢化玻璃自爆的较有效办法是进行科学有效地均质处理。在日常生产中控制钢化应力及钢化均匀度也能减少自爆发生。 建议玻璃幕墙使用防飞溅玻璃。本文仅供参考,不妥之处,敬请指正。
钢化应力越大,硫化镍结石的临界半径就越小,能引起自爆的结石就越多。显然,钢化应力应控制在适当的范围内,这样既可保证钢化碎片颗粒度满足有关标准,也能避免高应力引起的不必要自爆风险。平面应力(钢化均匀度)应越小越好,这样不仅减小自爆风险,而且能提高钢化玻璃的平整度。
己发展出无损测定钢化玻璃表面压应力的方法和仪器[6]。目前测定表面应力的方法主要有二种:差量表面折射仪法(Differential Surface Refractometry,简称DSR)和临界角表面偏光仪法(Grazing Angle Surface Polarimetry,简称GASP)。
DSR应力仪的原理是测定因应力引起的玻璃折射率的变化。当一定入射角的光到达玻璃表面时,由于应力双折射的作用,光束会分成两股以不同的临界角反射,借助测微目镜测出二光束之间的距离,即可计算出应力值。
GASP应力仪将激光束导入玻璃表面,在表面附近的薄层中以平行玻璃表面的方向运行一小段距离,应力双折射导致激光束发生干涉,测定干涉条纹的倾角就可计算出应力值。
两种方法各有优缺点。DSR应力仪售价较低、可测定化学钢化玻璃,但操作要求较高、不易掌握、测量精度相对较低。GASP应力仪工作可靠、精度高、易校验,不足之处是价格较贵。
钢化均匀度(平面应力)测定较简单,利用平面透射偏振光就能定性分析。但要定量分析,须使用定量应力分析方法,一般常用Senarmont检偏器旋转法测定应力消光补偿角,根据角度可方便地计算出应力值。
2 均质处理(HST)
均质处理是公认的彻底解决自爆问题的有效方法。将钢化玻璃再次加热到290℃左右并保温一定时间,使硫化镍在玻璃出厂前完成晶相转变,让今后可能自爆的玻璃在工厂内提前破碎。这种钢化后再次热处理的方法,国外称作“Heat Soak Test”,简称HST。我国通常将其译成“均质处理”,也俗称“引爆处理”。
从原理上看,均质处理似乎很简单,许多厂家对此并不重视,认为可随便选择外购甚至自制均质炉。实际并非如此,玻璃中的硫化镍夹杂物往往是非化学计量的化合物,含有比例不等的其他元素,其相变速度高度依赖于温度。研究结果表明,280℃时的相变速率是250℃时的100倍,因此必须确保炉内的各块玻璃经历同样的温度制度。否则一方面有些玻璃温度太高,会引起硫化镍逆向相变;另一方面温度低的玻璃因保温时间不够,使得硫化镍相变不完全。两种情况均会导致无效的均质处理。笔者曾测试了多台均质炉的温度制度,发现最好的进口炉也存在30℃以上的温差,多台国产炉内的温差甚至超过55℃。这或许解释了经均质处理的玻璃仍然出现许多自爆的原因。
3 均质炉
均质炉必须采用强制对流加热的方式加热玻璃。对流加热靠热空气加热玻璃,加热元件布置在风道中,空气在风道中被加热,然后进入炉内。这种加热方式可避免元件直接辐射加热玻璃,引起玻璃局部过热。
对流加热的效果依赖于热空气在炉内的循环路线,因此均质炉内的气体流股必须经过精心设计,总的原则是尽可能地使炉内气流通畅、温度均匀。即使发生玻璃破碎,碎片也不能堵塞气流通路。
只有全部玻璃的温度达到至少280℃并保温至少2小时,均质处理才能达到满意的效果。然而在日常生产中,控制炉温只能依据炉内的空气温度。因此必须对每台炉子进行标定试验,找出玻璃温度与炉内空气温度之间的关糸。炉内的测温点必须足够多,以满足处理工艺的需要。
4 玻璃堆置方式
均质炉内的玻璃片之间是热空气的对流通道,因此玻璃的堆置方式对于均质处理的质量是极其重要的。首先玻璃的堆置方向应顺应气流方向,不可阻碍空气流股。其次,玻璃片与片之间的空隙须足够大,分隔物不能堵塞空气通道,玻璃片之间至少须有20mm的间隙,片之间不能直接接触。对于大片玻璃,玻璃很容易因相互紧贴引起温差过大而破碎。
5 均质温度制度
均质处理的温度制度也是决定均质质量的一个决定性因素。1990年版的德国标准DIN 18516笼统规定了均质炉内的平均炉温为290+/-10℃,保温时间长达8小时。实践证明按此标准进行均质处理的玻璃自爆率还是较高,结果并不理想。因此,根据1994年以来的大量研究成果,2000年的欧洲新标准讨论稿将规定改为: 均质炉内玻璃的温度在290+/-10℃下保温2小时。多年累积的数据分析表明,严格按新标准均质处理过的玻璃,发生后续自爆的概率在0.01以下。此概率的意义是:每1万平方米玻璃,在1年之内再发生1例自爆的概率小于1%。由此才可自信地称钢化玻璃为“安全玻璃”。
6 浮法玻璃生产工艺
玻璃中的硫化镍夹杂物是导致钢化玻璃自爆的本质原因,人们自然地想到是否有可能在浮法玻璃生产过程中减少或消除此杂质。从技术角度看,目前世界上最先进的玻璃缺陷自动检测仪也只能检测大于0.2mm的点缺陷,试图在浮法生产线上将有缺陷的玻璃全部挑出来几乎是不可能的。
有报导在浮法原料中添加硫酸锌或硝酸锌能有效地减少硫化镍结石的数量。硫酸锌或硝酸锌都是强氧化剂,能将玻璃中的硫化物氧化成硫酸盐,后者能被玻璃液吸收,从而减少或消除硫化镍结石。
7 减少钢化玻璃的破损:
a.优先选用大厂出厂的原片玻璃,他们选材、工艺控制较严,混入杂质的机率较小。
b.钢化玻璃应边缘进行倒角磨边处理,减小应力集中。
c.做好玻璃的成品保护,防止蹦边、掉角,对蹦边、掉角不大的用抛光机磨成圆弧面,减小应力集中。
d.采购时要求玻璃厂进行钢化后的均质处理(引爆处理),一般小厂没有均质炉,或者有也出于成本考虑不用。并与其约定自爆率,以备日后索赔。
e.采光顶、雨蓬等接近水平、吸热较大的玻璃可考虑夹胶、半钢化夹胶(破碎后碎块较大,不易掉落)、化学钢化玻璃(强度高、价格贵)。
f.型材设计时充分考虑玻璃的热胀冷缩和层间位移变形,留住变形空间,施工时注意玻璃下部的垫块的厚度和硬度以及玻璃与框周边的间隙。
8 高层建筑玻璃幕墙使用全钢化玻璃问题值得探讨。
钢化玻璃自爆是当前玻璃幕墙安全迫切需要觧决重要的问题。但是对于安全玻璃的概念,传统的概念是,(全)钢化玻璃属于安全玻璃。其根据除了强度较高外,主要是由于(全)钢化玻璃破碎时会整块玻璃全部破碎成蜂窝状钝角小颗粒,不易伤人。通过这次调查和众多事故实践,对于这一概念提出了质疑,关于高层建筑玻璃幕墙使用安全玻璃问题,有讨论的必要。对于高层建筑玻璃幕墙使用安全玻璃,其安全的主要担心是玻璃破碎高空坠落伤人。这里应该包含三部分要求:
1)是玻璃具有足够的强度,使其承受设计荷载不破坏。
2)是玻璃具有防碰碎散落性,使其处于破碎状态时保证不会坠落飞散———随而不散落;
30是玻璃具有不易伤人的破坏形态,避免大块锐利碎片,而呈钝角,圆滑小颗粒状———但若从高空散落则有落则不论形态。以上三要素应该是把握与控制高层建筑玻璃幕墙安全玻璃的要点。
(全)钢化玻璃具备较高强度和其破坏形态为钝角小颗粒这两个安全因素,但不具备防破碎散落性这一对高层建筑玻璃幕墙而言关键性的安全因素、因此而带来的不安全后果是,(全)钢化玻璃破碎后的大群呈钝角的碎片,从高空散落而下,即使颗粒较小,但速度已很大,同样能伤人。其中的罪魁祸首便是自由落体重的重力速度。所以,对高层建筑玻璃幕墙的玻璃是否安全,最重要的是不破坏和碎片不散落。不论何种形态的玻璃碎片,如高层建筑上散落而下,都是危险的甚至是致命的。 此外,(全)钢化玻璃自爆破坏是无先兆的,是目前尚无有效的完全阶止的方法,是玻璃的癌症,玻璃自爆破碎和高空散落,便成为高层建筑玻璃幕墙使用(全)钢化玻璃并不安全的基本技术依据。因此,在一定高度下使用(全)钢化玻璃被认为是安全的,而超过一定高度使用它则应认为是不安全的。安全是一个相对的概念,是有条件的;不是绝对的,无条件的。对安全玻璃的传统概念,脱离使用条件,仅仅只从其碎片形态来定义,可能是不全面的。因此,在很多国外玻璃幕墙技术标准和规范中都明确玻璃幕墙使用防飞溅玻璃,日本高层建筑玻璃幕墙上使用(全)钢化玻璃,必须增贴一层防飞散膜,以确保安全。此外,如果半钢化玻璃破坏时,尽管其碎片大,仍有可能保留在框架中,而维持不散落则其伤人的可能性反而会小些。据此,保证黏结玻璃结构胶的宽度,使玻璃裂而不散落倒是一项保证半钢化玻璃安全性高于(全)钢化玻璃的技术措施。否则,如此大片而又尖锐形态,一旦从高空坠落则危险性极大。例如“钛全箔膜”与普通浮法玻璃复合而成的一种安全玻璃,因为它正是针对(全)钢化玻璃前述缺点而产生的新的材料和应用优势。“钛金箔膜复合安全玻璃”具有高强度的特点,其增强效果可以达到(全)钢化玻璃的同一级别。高的抗冲击性、防爆性、破碎不散落性。“强而不自爆,碎而不散落”防飞溅玻璃才是玻璃幕墙使用的安全玻璃。
结 语
硫化镍相变是导致钢化玻璃自爆的主要原因,目前解决钢化玻璃自爆的较有效办法是进行科学有效地均质处理。在日常生产中控制钢化应力及钢化均匀度也能减少自爆发生。 建议玻璃幕墙使用防飞溅玻璃。本文仅供参考,不妥之处,敬请指正。